Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 01 2015 04:36:52
%S 1,20,200,1360,7200,32024,125280,443680,1450240,4435940,12827888,
%T 35346800,93377920,237675640,585229760,1398704736,3253934080,
%U 7386124520,16392493800,35634450320,75992326592,159199081600,328027789600
%N Number of partitions of 2n into parts with 10 types c^1 c^2...C^10 of each part. The even parts appear with multiplicity 1 for each type . The odd parts occur with multiplicity 2 for each part.
%C This is also Sequence(A080054)^(10) or sequence(A007096)^(5).
%C In general, if j > 0 and g.f. = Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^j, then a(n) ~ exp(Pi*sqrt(j*n/2)) * j^(1/4) / (2^(j/2 + 7/4) * n^(3/4)). - _Vaclav Kotesovec_, Aug 28 2015
%F G.f.:(theta_4(0, x^2)/theta_4(0, x))^10= (theta_3(0, x)/theta_4(0, x))^5.
%F a(n) ~ exp(Pi*sqrt(5*n)) * 5^(1/4) / (64 * sqrt(2) * n^(3/4)). - _Vaclav Kotesovec_, Aug 28 2015
%e a(2)=200 because we have 10 types of 4, 45 ways of writing 4 in terms of ten of 2's only or ten of 11's only and 100 ways of writing 2's combined with 11's so the total number of ways of writing 4 is 200.
%p series(product(((1+x^k)*(1-x^(2*k)))^(10)/((1-x^k)*(1+x^(2*k)))^(10),k=1..100),x=0,100);
%t nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^10,{k,0,nmax}],{x,0,nmax}],x] (* _Vaclav Kotesovec_, Aug 28 2015 *)
%Y Cf. A080054 (j=1), A007096 (j=2), A261647 (j=3), A014969 (j=4), A261648 (j=5), A014970 (j=6), A014972 (j=8).
%K nonn
%O 0,2
%A _Noureddine Chair_, Feb 16 2005
%E Example corrected by _Vaclav Kotesovec_, Sep 01 2015