OFFSET
1,3
COMMENTS
Same as A005097 ((odd primes - 1)/2) with a leading zero. - Lambert Klasen, Nov 06 2005
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000
FORMULA
Integer part of p#/((p-2)#*2#), where p=prime(n) and i# is the primorial function A034386(i). - Cino Hilliard, Feb 25 2005
n# = product of primes <= n. 0# = 1# = 2. [This is not a standard convention!] n#/(n-r)#/r# is analogous to the number of binomial coefficients A007318 = C(n, r) = n!/(n-r)!/r! where factorial ! is replaced by primorial #.
a(n) = prime_n - floor((prime_n)/2) - 1. - Giovanni Teofilatto, Nov 05 2005
a(n) = [(prime(n)-1)/2] where the integer part [.] needs be taken only for n=1. - M. F. Hasler, Dec 13 2019
MATHEMATICA
Table[Prime[n] - Floor[Prime[n]/2] - 1, {n, 65}] (* Robert G. Wilson v *)
PROG
(PARI) c(n, r) = { local(p); forprime(p=r, n, print1(floor(primorial(p)/ primorial(p-r)/primorial(r)+.0)", ") ) } primorial(n) = \ The product primes <= n using the pari primelimit. { local(p1, x); if(n==0||n==1, return(2)); p1=1; forprime(x=2, n, p1*=x); return(p1) }
(PARI) apply( A102781(n)=(prime(n)-1)\2, [1..99]) \\ M. F. Hasler, Dec 13 2019
(Python)
from sympy import prime
def A102781(n): return prime(n)-1>>1 # Chai Wah Wu, Oct 13 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 25 2005
EXTENSIONS
Simpler definition from Giovanni Teofilatto, Nov 05 2005
Edited by N. J. A. Sloane Jul 05 2009 at the suggestion of R. J. Mathar
STATUS
approved