login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102781
Number of positive even numbers less than the n-th prime.
13
0, 1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 20, 21, 23, 26, 29, 30, 33, 35, 36, 39, 41, 44, 48, 50, 51, 53, 54, 56, 63, 65, 68, 69, 74, 75, 78, 81, 83, 86, 89, 90, 95, 96, 98, 99, 105, 111, 113, 114, 116, 119, 120, 125, 128, 131, 134, 135, 138, 140, 141, 146, 153, 155, 156
OFFSET
1,3
COMMENTS
Same as A005097 ((odd primes - 1)/2) with a leading zero. - Lambert Klasen, Nov 06 2005
LINKS
FORMULA
Integer part of p#/((p-2)#*2#), where p=prime(n) and i# is the primorial function A034386(i). - Cino Hilliard, Feb 25 2005
n# = product of primes <= n. 0# = 1# = 2. [This is not a standard convention!] n#/(n-r)#/r# is analogous to the number of binomial coefficients A007318 = C(n, r) = n!/(n-r)!/r! where factorial ! is replaced by primorial #.
a(n) = prime_n - floor((prime_n)/2) - 1. - Giovanni Teofilatto, Nov 05 2005
a(n) = [A034386(prime(n))/(2*A034386(prime(n)-2))], n>2. - R. J. Mathar, May 18 2009
a(n) = [(prime(n)-1)/2] where the integer part [.] needs be taken only for n=1. - M. F. Hasler, Dec 13 2019
MATHEMATICA
Table[Prime[n] - Floor[Prime[n]/2] - 1, {n, 65}] (* Robert G. Wilson v *)
PROG
(PARI) c(n, r) = { local(p); forprime(p=r, n, print1(floor(primorial(p)/ primorial(p-r)/primorial(r)+.0)", ") ) } primorial(n) = \ The product primes <= n using the pari primelimit. { local(p1, x); if(n==0||n==1, return(2)); p1=1; forprime(x=2, n, p1*=x); return(p1) }
(PARI) apply( A102781(n)=(prime(n)-1)\2, [1..99]) \\ M. F. Hasler, Dec 13 2019
(Python)
from sympy import prime
def A102781(n): return prime(n)-1>>1 # Chai Wah Wu, Oct 13 2024
CROSSREFS
Cf. A005097. - R. J. Mathar, May 18 2009
Equals (A000040-1)/2, integer part (0) for the first term. - M. F. Hasler, Dec 13 2019
Sequence in context: A082583 A274332 A005097 * A130290 A139791 A027563
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 25 2005
EXTENSIONS
Simpler definition from Giovanni Teofilatto, Nov 05 2005
Edited by N. J. A. Sloane Jul 05 2009 at the suggestion of R. J. Mathar
STATUS
approved