OFFSET
0,4
COMMENTS
The Ca1 and Ca2 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 equal this sequence. - Johannes W. Meijer, Jul 14 2011
For n >= 5, a(n+1)-1 is the number of non-isomorphic snake polyominoes with n cells that can be inscribed in a rectangle of height 2. - Christian Barrientos and Sarah Minion, Jul 29 2018
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
R. J. Mathar, Paving rectangular regions with rectangular tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 25.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,1,-1,0,-1).
FORMULA
a(n) = A068927(n-1), n>3.
From Johannes W. Meijer, Jul 14 2011: (Start)
G.f.: (-1/2)*(1/(x^3+x-1)+(1+x+x^3)/(x^6+x^2-1))= ( 1-x^2-x^4-x^6 ) / ( (x^3+x-1)*(x^6+x^2-1) ).
MAPLE
MATHEMATICA
CoefficientList[Series[(1 - x^2 - x^4 - x^6)/((x^3 + x - 1)*(x^6 + x^2 - 1)), {x, 0, 50}], x] (* G. C. Greubel, Apr 27 2017 *)
LinearRecurrence[{1, 1, 0, 0, -1, 1, -1, 0, -1}, {1, 1, 1, 2, 2, 3, 4, 6, 8}, 50] (* Harvey P. Dale, Dec 14 2023 *)
PROG
(PARI) x='x+O('x^50); Vec((1 - x^2 - x^4 - x^6)/((x^3 + x - 1)*(x^6 + x^2 - 1))) \\ G. C. Greubel, Apr 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Gerald McGarvey, Feb 24 2005
STATUS
approved