login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368746
Compositions (ordered partitions) of n into odd parts where the first part must be a maximal part.
1
1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 18, 27, 40, 61, 93, 142, 217, 333, 512, 789, 1217, 1881, 2912, 4514, 7007, 10893, 16956, 26427, 41238, 64426, 100767, 157778, 247301, 388007, 609351, 957836, 1506928, 2372763, 3739035, 5896462, 9305388, 14695124, 23221657, 36718116, 58092690, 91961034
OFFSET
0,4
LINKS
FORMULA
G.f.: 1 + Sum_{n>=1} x^(2*n-1)/(1 - Sum_{k=1..n} x^(2*k-1) ).
EXAMPLE
The a(10) = 18 such compositions are:
1: [ 1 1 1 1 1 1 1 1 1 1 ]
2: [ 3 1 1 1 1 1 1 1 ]
3: [ 3 1 1 1 1 3 ]
4: [ 3 1 1 1 3 1 ]
5: [ 3 1 1 3 1 1 ]
6: [ 3 1 3 1 1 1 ]
7: [ 3 1 3 3 ]
8: [ 3 3 1 1 1 1 ]
9: [ 3 3 1 3 ]
10: [ 3 3 3 1 ]
11: [ 5 1 1 1 1 1 ]
12: [ 5 1 1 3 ]
13: [ 5 1 3 1 ]
14: [ 5 3 1 1 ]
15: [ 5 5 ]
16: [ 7 1 1 1 ]
17: [ 7 3 ]
18: [ 9 1 ]
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1, `if`(m=0,
add(b(n-2*j+1, 2*j-1), j=1..(n+1)/2), add(
b(n-2*j+1, min(n-2*j+1, m)), j=1..(min(n, m)+1)/2)))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..45); # Alois P. Heinz, Jan 04 2024
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0,
Sum[b[n - 2j + 1, 2j - 1], {j, 1, (n + 1)/2}], Sum[
b[n - 2j + 1, Min[n - 2j + 1, m]], {j, 1, (Min[n, m] + 1)/2}]]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Mar 03 2024, after Alois P. Heinz *)
PROG
(PARI) my(N=44, x='x+O('x^N)); Vec(1+sum(n=1, N, x^(2*n-1)/(1-sum(k=1, n, x^(2*k-1)))))
CROSSREFS
Cf. A079500.
Sequence in context: A102543 A173383 A316076 * A325832 A068598 A293165
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jan 04 2024
STATUS
approved