login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101917
G.f. satisfies: A(x) = 1/(1 + x*A(x^7)) and also the continued fraction: 1 + x*A(x^8) = [1; 1/x, 1/x^7, 1/x^49, 1/x^343, ..., 1/x^(7^(n-1)), ...].
6
1, -1, 1, -1, 1, -1, 1, -1, 2, -3, 4, -5, 6, -7, 8, -10, 13, -17, 22, -28, 35, -43, 53, -66, 83, -105, 133, -168, 211, -264, 330, -413, 518, -651, 819, -1030, 1294, -1624, 2037, -2555, 3206, -4025, 5055, -6349, 7973, -10010, 12565, -15771, 19796, -24851, 31200, -39173, 49183, -61748, 77519, -97315, 122166
OFFSET
0,9
FORMULA
This was conjectured to have g.f. (1+x^7) / (1+x+x^7) by Ralf Stephan, May 17 2007, but this is wrong. This g.f. produces a sequence which differs at a(57) = -153367. The g.f. gives a(57) = -153366. - Johannes W. Meijer, Aug 08 2011
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/7)} a(k) * a(n-7*k-1). - Ilya Gutkovskiy, Mar 01 2022
MAPLE
nmax:=57: kmax:=nmax: for k from 0 to kmax do A:= proc(x): add(A101917(n)*x^n, n=0..k) end: f(x):=series(1/(1 + x*A(x^7)), x, k+1); for n from 0 to k do x(n):=coeff(f(x), x, n) od: A101917(k):=x(k): od: seq(A101917(n), n=0..nmax); # Johannes W. Meijer, Aug 08 2011
MATHEMATICA
m = 57; A[_] = 0; Do[A[x_] = 1/(1 + x A[x^7]) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) a(n)=local(A); A=1-x; for(i=1, n\7+1, A=1/(1+x*subst(A, x, x^7)+x*O(x^n))); polcoeff(A, n, x)
(PARI) a(n)=local(M=contfracpnqn(concat(1, vector(ceil(log(n+1)/log(7))+1, n, 1/x^(7^(n-1)))))); polcoeff(M[1, 1]/M[2, 1]+x*O(x^(8*n+1)), 8*n+1)
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 20 2004
STATUS
approved