login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322802
Number of compositions (ordered partitions) of n into centered hexagonal numbers (A003215).
3
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 45, 56, 70, 88, 111, 140, 178, 226, 286, 361, 455, 573, 721, 909, 1148, 1451, 1834, 2318, 2928, 3695, 4661, 5880, 7420, 9366, 11826, 14935, 18860, 23812, 30059, 37941, 47888, 60445, 76302, 96327
OFFSET
0,8
FORMULA
G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)+1)).
MAPLE
h:= proc(n) option remember; `if`(n<0, 0, (t->
`if`(3*t*(t+1)+1>n, t-1, t))(1+h(n-1)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-(3*i*(i+1)+1)), i=0..h(n)))
end:
seq(a(n), n=0..60); # Alois P. Heinz, Dec 28 2018
MATHEMATICA
nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1) + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 26 2018
STATUS
approved