login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282502
Expansion of 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).
4
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 15, 21, 29, 40, 57, 81, 114, 159, 223, 315, 445, 626, 879, 1236, 1741, 2452, 3450, 4852, 6826, 9608, 13524, 19032, 26778, 37680, 53027, 74627, 105017, 147776, 207949, 292636, 411813, 579515, 815499, 1147585, 1614917, 2272566, 3198016, 4500318, 6332952, 8911902, 12541080
OFFSET
0,5
COMMENTS
Number of compositions (ordered partitions) into сentered triangular numbers (A005448).
Conjecture: every number > 1 is the sum of at most 5 сentered triangular numbers.
FORMULA
G.f.: 1/(1 - Sum_{k>=0} x^(3*k*(k+1)/2+1)).
a(n) ~ c / r^n, where r = 0.71061790420456638132596657780064392952867377958... is the root of the equation r^(5/8)*EllipticTheta(2, 0, r^(3/2)) = 2 and c = 0.478786567198436133936216342628844283927491282611910379922933700360643... . - Vaclav Kotesovec, Feb 17 2017
EXAMPLE
a(7) = 5 because we have [4, 1, 1, 1], [1, 4, 1, 1], [1, 1, 4, 1], [1, 1, 1, 4] and [1, 1, 1, 1, 1, 1, 1].
MATHEMATICA
nmax = 50; CoefficientList[Series[1/(1 - Sum[x^(3 k (k + 1)/2 + 1), {k, 0, nmax}]), {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 16 2017
STATUS
approved