login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101295
Number of partitions of n!.
1
1, 1, 2, 11, 1575, 1844349560, 153758476658245881594406593, 347537071782505941949439171855284853031279455482877609142244398412144336038
OFFSET
0,3
COMMENTS
The next term is too large to include. - Robert G. Wilson v, Dec 22 2004
FORMULA
a(n) = A000041(A000142(n)). - Michel Marcus, Mar 25 2015
EXAMPLE
P(3!) = 11; P(4!) = 1575.
MATHEMATICA
Table[ PartitionsP[n!], {n, 8}] (* Robert G. Wilson v, Dec 23 2004 *)
PROG
(MuPAD) combinat::partitions::count(i!) $i=0..8 // Zerinvary Lajos, Apr 16 2007
(PARI) a(n) = numbpart(n!); \\ Michel Marcus, Mar 25 2015
(Magma) a:= func<n | NumberOfPartitions(Factorial(n))>; [a(n): n in [0..8]]; // Vincenzo Librandi, Apr 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Dec 21 2004
EXTENSIONS
More terms from Robert G. Wilson v, Dec 22 2004
STATUS
approved