login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n!.
1

%I #20 Mar 20 2023 08:51:11

%S 1,1,2,11,1575,1844349560,153758476658245881594406593,

%T 347537071782505941949439171855284853031279455482877609142244398412144336038

%N Number of partitions of n!.

%C The next term is too large to include. - _Robert G. Wilson v_, Dec 22 2004

%F a(n) = A000041(A000142(n)). - _Michel Marcus_, Mar 25 2015

%e P(3!) = 11; P(4!) = 1575.

%t Table[ PartitionsP[n!], {n, 8}] (* _Robert G. Wilson v_, Dec 23 2004 *)

%o (MuPAD) combinat::partitions::count(i!) $i=0..8 // _Zerinvary Lajos_, Apr 16 2007

%o (PARI) a(n) = numbpart(n!); \\ _Michel Marcus_, Mar 25 2015

%o (Magma) a:= func<n | NumberOfPartitions(Factorial(n))>; [a(n): n in [0..8]]; // _Vincenzo Librandi_, Apr 06 2015

%Y Cf. A000041, A000142, A153256.

%K nonn

%O 0,3

%A _Parthasarathy Nambi_, Dec 21 2004

%E More terms from _Robert G. Wilson v_, Dec 22 2004