login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131306
Smallest prime ending with exactly n identical digits.
1
2, 11, 1777, 23333, 199999, 2999999, 19999999, 577777777, 1777777777, 23333333333, 311111111111, 2111111111111, 17777777777777, 499999999999999, 1333333333333333, 23333333333333333
OFFSET
1,1
COMMENTS
By Dirichlet's theorem, there is a prime for each n. For the n in A004023, the smallest prime consists of all ones. - T. D. Noe, Oct 01 2007
EXAMPLE
a(4)=23333 because 23333 is the smallest prime ending with exactly 4 identical digits.
MATHEMATICA
sp[n_]:=Module[{k=1}, While[!PrimeQ[k*10^IntegerLength[n]+n], k++]; k*10^IntegerLength[n]+n]; Join[{2, 11}, Table[Min[sp/@FromDigits/@ Table[PadRight[{}, i, n], {n, {1, 3, 7, 9}}]], {i, 3, 20}]] (* Harvey P. Dale, Aug 28 2016 *)
CROSSREFS
Sequence in context: A051254 A095820 A101295 * A145797 A284739 A246518
KEYWORD
base,nonn
AUTHOR
Shyam Sunder Gupta, Sep 29 2007
STATUS
approved