login
A101166
a(n) = (15*n^4 + 22*n^3 + 45*n^2 + 14*n) / 24.
4
0, 4, 26, 94, 251, 555, 1079, 1911, 3154, 4926, 7360, 10604, 14821, 20189, 26901, 35165, 45204, 57256, 71574, 88426, 108095, 130879, 157091, 187059, 221126, 259650, 303004, 351576, 405769, 466001, 532705, 606329, 687336, 776204, 873426
OFFSET
0,2
COMMENTS
a(n) = A001846(n) - A000332(n+4) = A101164(n+4,4) for n > 0.
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(0)=0, a(1)=4, a(2)=26, a(3)=94, a(4)=251. - Harvey P. Dale, Oct 12 2012
G.f.: (-x^4-4*x^3-6*x^2-4*x)/(x-1)^5. - Harvey P. Dale, Oct 12 2012
MATHEMATICA
Table[(15n^4+22n^3+45n^2+14n)/24, {n, 0, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 4, 26, 94, 251}, 40] (* Harvey P. Dale, Oct 12 2012 *)
PROG
(Magma)[(15*n^4+22*n^3+45*n^2+14*n) / 24: n in [0..40]]; // Vincenzo Librandi, Dec 26 2010
(PARI) a(n)=(15*n^4+22*n^3+45*n^2+14*n)/24 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A299340 A299847 A118285 * A299003 A299670 A299748
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Dec 03 2004
STATUS
approved