login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101168
Lengths of successive words (starting with a) under the substitution: {a -> aab, b -> aac, c -> a}.
1
1, 3, 9, 25, 71, 201, 569, 1611, 4561, 12913, 36559, 103505, 293041, 829651, 2348889, 6650121, 18827671, 53304473, 150914409, 427265435, 1209664161, 3424773601, 9696140959, 27451493281, 77720042081, 220039211683, 622970000809, 1763738467065, 4993456147431
OFFSET
0,2
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) + a(n-3).
G.f.: (1+x+x^2) / (1-2*x-2*x^2-x^3).
a(n-1) = sum(k=1..n, sum(m=0..n-k, (sum(j=0..k, binomial(j, n-m-3*k+2*j) *binomial(k, j))) *sum(i=ceiling(m/2)..m, binomial(i, m-i)*binomial(k+i-1, k-1)))). - Vladimir Kruchinin, May 05 2011
EXAMPLE
a => aab => aabaabaac => aabaabaacaabaabaacaabaaba, thus a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 25.
MAPLE
a:= n-> (<<0|1|0>, <0|0|1>, <1|2|2>>^n. <<1, 3, 9>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, May 06 2011
MATHEMATICA
Length/@SubstitutionSystem[{a->{a, a, b}, b->{a, a, c}, c->a}, {a}, 15] (* The program generates the first 16 terms of the sequence. To generate more, increase the final ("15") constant. *) (* Harvey P. Dale, Sep 05 2022 *)
PROG
(Maxima) a(n):=b(n+1);
b(n):= sum(sum((sum(binomial(j, n+1-m-3*k+2*j) *binomial(k, j), j, 0, k)) *sum(binomial(i, m-i) *binomial(k+i-1, k-1), i, ceiling(m/2), m), m, 0, n+1-k), k, 1, n+1); /* Vladimir Kruchinin, May 05 2011 */
CROSSREFS
Sequence in context: A309105 A101197 A233828 * A211287 A211290 A211299
KEYWORD
easy,nonn
AUTHOR
Jeroen F.J. Laros, Jan 22 2005
STATUS
approved