login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101024
Table of numerators of coefficients of certain rational polynomials.
2
1, 1, 2, 1, 6, 2, 1, 12, 12, 8, 1, 20, 40, 16, 8, 1, 30, 100, 80, 120, 16, 1, 42, 210, 280, 120, 16, 16, 1, 56, 392, 784, 560, 448, 448, 128, 1, 72, 672, 9408, 2016, 896, 1792, 1536, 128, 1, 90, 1080, 4032, 6048, 4032, 13440, 23040, 1152, 256, 1, 110, 1650, 7920
OFFSET
0,3
COMMENTS
These rational polynomials R(n;x) appear in the evaluation of an integral in thermal field theories in the Bose case. See the Haber and Weldon reference eq. (D1), l. 4, l=1 case, p. 1857 and the W. Lang link.
REFERENCES
H. E. Haber and H. A. Weldon, On the relativistic Bose-Einstein integrals, J. Math. Phys. 23(10) (1982) 1852-1858.
FORMULA
a(n, m)= numerator(R(n, x)[x^m]), m=0, ..., n, n>=0, with the rational polynomials R(n, x) of degree n defined by R(n, x):=hypergeom([ -n, -1-n], [1/2], -x/2)) = sum(r(n, m)*x^m, m=0..n), n>=0.
The rational polynomials are R(n, x) = 1 + sum((binomial(n, m)*binomial(n+1, m)/binomial(2*m, m))*(2*x)^m, m=1..n), n>=0.
a(n, m)=numerator(r(n, m)) with the rational triangle r(n, m) = (2^m)*binomial(n, m)*binomial(n+1, m)/binomial(2*m, m), m=1..n, n>=1 and r(n, 0)=1, n>=0, else 0.
EXAMPLE
The rows of the rational table are: [1/1]; [1/1,2/1]; [1/1, 6/1, 2/1];[1/1, 12/1, 12/1, 8/5]; ...
CROSSREFS
The table of denominators is given in A101025.
Sequence in context: A208751 A133200 A103881 * A124730 A114283 A106187
KEYWORD
nonn,frac,tabl,easy
AUTHOR
Wolfdieter Lang, Nov 30 2004
STATUS
approved