OFFSET
0,3
COMMENTS
These rational polynomials R(n;x) appear in the evaluation of an integral in thermal field theories in the Bose case. See the Haber and Weldon reference eq. (D1), l. 4, l=2 case (space dimension 3), p. 1857 and the W. Lang link.
REFERENCES
H. E. Haber and H. A. Weldon, On the relativistic Bose-Einstein integrals, J. Math. Phys. 23(10) (1982) 1852-1858.
LINKS
FORMULA
a(n, m)= numerator(R(n, x)[x^m]), m=0, ..., n, n>=0, with the rational polynomials R(n, x) of degree n defined by R(n, x):=hypergeom([ -n, -2-n], [1/2], -x/2)) = sum(r(n, m)*x^m, m=0..n), n>=0.
The rational polynomials are R(n, x) = 1 + sum((binomial(n, m)*binomial(n+2, m)/binomial(2*m, m))*(2*x)^m, m=1..n), n>=0.
a(n, m)=numerator(r(n, m)) with the rational triangle r(n, m) = (2^m)*binomial(n, m)*binomial(n+2, m)/binomial(2*m, m), m=1..n, n>=1 and r(n, 0)=1, n>=0, else 0.
EXAMPLE
The rows of the rational table are: [1/1]; [1/1, 3/1]; [1/1, 8/1, 4/1]; [1/1, 15/1, 20/1, 4/1]; [1/1, 24/1, 60/1, 32/1, 24/7];...
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Nov 30 2004
STATUS
approved