OFFSET
1,2
COMMENTS
The denominators are given in A101029.
The limit s = lim_{n -> infinity} s(n) with s(n) defined below equals 3*Sum_{k >= 1} zeta(2*k+1)/2^(2*k) with Euler's (or Riemann's) zeta function. This limit is 3*(2*log(2)-1) = 1.158883083...; see the Abramowitz-Stegun reference p. 259, eq. 6.3.15 with z = 1/2 together with p. 258, eqs. 6.3.5 and 6.3.3.
This is the first member (m = 2) of a family of rational partial sum sequences s(n,m) = (m-1)*m*(m+1)*Sum_{k = 1..n} 1/((m*k-1)*(m*k)*(m*k+1)) which have limit s(m) = lim_{n -> infinity} s(n,m) = -(gamma + Psi(1/m) + m/2 + Pi*cot(Pi*x)/2), with the Euler-Mascheroni constant gamma and the digamma function Psi. The same limit is reached by (m^2-1)*Sum_{k >= 0} zeta(2*k+1)/m^(2*k).
From Peter Bala, Feb 17 2022: (Start)
Let F(n) = (6*n/(2*n-1))*( 1/(1*2)*(n-1)/n - 1/(2*3)*(n-1)*(n-2)/(n*(n+1)) + 1/(3*4)*(n-1)*(n-2)*(n-3)/(n*(n+1)*(n+2)) - 1/(4*5)*(n-1)*(n-2)*(n-3)*(n-4)/(n*(n+1)*(n+2)*(n+3)) + ...). Then F(n+1) = 6*Sum_{k = 1..n} 1/((2*k-1)*(2*k)*(2*k+1)). Cf. A082687.
This identity allows us to extend the definition of Sum_{k = 1..n} 1/((2*k-1)*(2*k)*(2*k+1)) to non-integral values of n. (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, pp. 258-259.
Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Wolfdieter Lang, Rationals s(n) and more.
FORMULA
a(n) = numerator(s(n)) with s(n) = 6*Sum_{k = 1..n} 1/((2*k-1)*(2*k)*(2*k+1)).
EXAMPLE
s(3)= 6*(1/(1*2*3)+ 1/(3*4*5) + 1/(5*6*7)) = 79/70, hence a(3)=79 and A101029(3)=70.
PROG
(PARI) a(n) = numerator(6*sum(k=1, n, 1/((2*k-1)*(2*k)*(2*k+1)))); \\ Michel Marcus, Feb 28 2022
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Dec 17 2004
EXTENSIONS
More terms from Michel Marcus, Feb 28 2022
STATUS
approved