The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101030 Triangle read by rows: T(n,k) = number of functions from an n-element set into but not onto a k-element set. 6
 0, 0, 2, 0, 2, 21, 0, 2, 45, 232, 0, 2, 93, 784, 3005, 0, 2, 189, 2536, 13825, 45936, 0, 2, 381, 7984, 61325, 264816, 818503, 0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896, 0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Theorem 2.2(v). D. P. Walsh, A note on non-surjective functions from [n] to [k]. FORMULA T(n,k) = A089072(n,k) - A019538(n,k). T(n,k) = Sum_{j=1..k} (-1)^(j-1)*C(k,j)*(k-j)^n. - Dennis P. Walsh, Apr 13 2016 T(n,k) = k^n - k!*Stirling2(n,k). - Dennis P. Walsh, Apr 13 2016 EXAMPLE T(3,3) = #(functions into) - #(functions onto) = 3^3 - 6 = 21 Triangle T(n,k) begins: 0, 0, 2; 0, 2, 21; 0, 2, 45, 232; 0, 2, 93, 784, 3005; 0, 2, 189, 2536, 13825, 45936; 0, 2, 381, 7984, 61325, 264816, 818503; 0, 2, 765, 24712, 264625, 1488096, 5623681, 16736896; 0, 2, 1533, 75664, 1119005, 8172576, 38025127, 132766208, 387057609; MAPLE T:=(n, k)->sum((-1)^(j-1)*binomial(k, j)*(k-j)^n, j=1..k); seq(seq(T(n, k), k=1..n), n=1..15); # Dennis P. Walsh, Apr 13 2016 CROSSREFS Cf. A199656, A036679 (diagonal). Sequence in context: A285152 A077184 A077183 * A093857 A056949 A346235 Adjacent sequences: A101027 A101028 A101029 * A101031 A101032 A101033 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Nov 26 2004 EXTENSIONS Offset corrected from 0 to 1 by Dennis P. Walsh, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 03:04 EST 2022. Contains 358362 sequences. (Running on oeis4.)