login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036679
a(n) = n^n - n!.
20
0, 0, 2, 21, 232, 3005, 45936, 818503, 16736896, 387057609, 9996371200, 285271753811, 8915621446656, 302868879571453, 11111919647266816, 437892582706491375, 18446723150919663616, 827239906198908668177, 39346401672922831847424, 1978419534015213180291979
OFFSET
0,3
COMMENTS
a(n) = |non-injective functions [n]->[n]| = |non-surjective functions [n]->[n]|.
Fit a polynomial f of degree n-1 to the first n n-th powers of nonnegative integers. Then a(n) = f(n). - Franklin T. Adams-Watters, Dec 28 2006
n^n > n! for n >= 3. [Mitrinovic]
REFERENCES
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 193, 3.1.22.
LINKS
T. D. Noe and Vincenzo Librandi, Table of n, a(n) for n = 0..300 [T. D. Noe computed terms 0-50, May 11 2007; Vincenzo Librandi computed the first 300 terms, Aug 22 2011]
Mohammad K. Azarian, Remarks and Conjectures Regarding Combinatorics of Discrete Partial Functions, Int'l Math. Forum (2022) Vol. 17, No. 3, 129-141. See Corollary 2.3(iii).
FORMULA
E.g.f.: 1/(1-T(x))-1/(1-x) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Dec 10 2012
MATHEMATICA
Join[{0}, Table[n^n - n!, {n, 20}]] (* Harvey P. Dale, Oct 11 2011 *)
PROG
(Magma) [(n^n-Factorial(n)): n in [0..20] ]; // Vincenzo Librandi, Aug 22 2011
(PARI) a(n)=n^n-n! \\ Charles R Greathouse IV, Aug 22 2011
(Python)
from math import factorial
def a(n): return n**n - factorial(n)
print([a(n) for n in range(20)]) # Michael S. Branicky, Aug 10 2021
CROSSREFS
Cf. A126130, diagonal of A101030.
Sequence in context: A062813 A024231 A069717 * A134490 A045726 A105712
KEYWORD
nonn,easy,nice
STATUS
approved