|
|
A036679
|
|
a(n) = n^n - n!.
|
|
19
|
|
|
0, 0, 2, 21, 232, 3005, 45936, 818503, 16736896, 387057609, 9996371200, 285271753811, 8915621446656, 302868879571453, 11111919647266816, 437892582706491375, 18446723150919663616, 827239906198908668177, 39346401672922831847424, 1978419534015213180291979
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) = |non-injective functions [n]->[n]| = |non-surjective functions [n]->[n]|.
Fit a polynomial f of degree n-1 to the first n n-th powers of nonnegative integers. Then a(n) = f(n). - Franklin T. Adams-Watters, Dec 28 2006
n^n > n! for n >= 3. [Mitrinovic]
|
|
REFERENCES
|
D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 193, 3.1.22.
|
|
LINKS
|
T. D. Noe and Vincenzo Librandi, Table of n, a(n) for n = 0..300 [T. D. Noe computed terms 0-50, May 11 2007; Vincenzo Librandi computed the first 300 terms, Aug 22 2011]
|
|
FORMULA
|
E.g.f.: 1/(1-T(x))-1/(1-x) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Dec 10 2012
|
|
MATHEMATICA
|
Join[{0}, Table[n^n - n!, {n, 20}]] (* Harvey P. Dale, Oct 11 2011 *)
|
|
PROG
|
(Magma) [(n^n-Factorial(n)): n in [0..20] ]; // Vincenzo Librandi, Aug 22 2011
(PARI) a(n)=n^n-n! \\ Charles R Greathouse IV, Aug 22 2011
(Python)
from math import factorial
def a(n): return n**n - factorial(n)
print([a(n) for n in range(20)]) # Michael S. Branicky, Aug 10 2021
|
|
CROSSREFS
|
Cf. A126130, diagonal of A101030.
Sequence in context: A062813 A024231 A069717 * A134490 A045726 A105712
Adjacent sequences: A036676 A036677 A036678 * A036680 A036681 A036682
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
N. J. A. Sloane, G. L. Honaker, Jr.
|
|
STATUS
|
approved
|
|
|
|