Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Aug 30 2019 03:34:48
%S 1,1,2,1,6,2,1,12,12,8,1,20,40,16,8,1,30,100,80,120,16,1,42,210,280,
%T 120,16,16,1,56,392,784,560,448,448,128,1,72,672,9408,2016,896,1792,
%U 1536,128,1,90,1080,4032,6048,4032,13440,23040,1152,256,1,110,1650,7920
%N Table of numerators of coefficients of certain rational polynomials.
%C These rational polynomials R(n;x) appear in the evaluation of an integral in thermal field theories in the Bose case. See the Haber and Weldon reference eq. (D1), l. 4, l=1 case, p. 1857 and the W. Lang link.
%D H. E. Haber and H. A. Weldon, On the relativistic Bose-Einstein integrals, J. Math. Phys. 23(10) (1982) 1852-1858.
%H W. Lang: <a href="/A101024/a101024.txt">Rational polynomials R(n,x)</a>
%F a(n, m)= numerator(R(n, x)[x^m]), m=0, ..., n, n>=0, with the rational polynomials R(n, x) of degree n defined by R(n, x):=hypergeom([ -n, -1-n], [1/2], -x/2)) = sum(r(n, m)*x^m, m=0..n), n>=0.
%F The rational polynomials are R(n, x) = 1 + sum((binomial(n, m)*binomial(n+1, m)/binomial(2*m, m))*(2*x)^m, m=1..n), n>=0.
%F a(n, m)=numerator(r(n, m)) with the rational triangle r(n, m) = (2^m)*binomial(n, m)*binomial(n+1, m)/binomial(2*m, m), m=1..n, n>=1 and r(n, 0)=1, n>=0, else 0.
%e The rows of the rational table are: [1/1]; [1/1,2/1]; [1/1, 6/1, 2/1];[1/1, 12/1, 12/1, 8/5]; ...
%Y The table of denominators is given in A101025.
%K nonn,frac,tabl,easy
%O 0,3
%A _Wolfdieter Lang_, Nov 30 2004