The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100597 Based on the first matrix inverse of transformed Bernoulli numbers as defined in the Comments line. 2
 1, 1, 2, 5, 14, 49, 258, 1385, 1342, -13739, 1727362, 20549165, -892047378, -13084315271, 979519187138, 16158974238545, -1747908612654946, -32246548780758179, 4903305033480792642, 100032668564662494485, -20685044415403212103730, -462550882810484735564351 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A family of polynomials is defined by P(0,x) = u(0), P(n,x) = u(n) +x*Sum_{i=0..n-1} u(i)*P(n-i-1,x), where u(n) is the n-th Bernoulli number. The coefficients of P(n-1,x) are used to fill the n-th row of the infinite lower triangle matrix M. Then a(n) is given by M^(-1)[n,1] * n!. REFERENCES P. Curtz, Gazette des Mathematiciens, 1992, 52, p.44. P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, 55, pp.67-78. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..100 EXAMPLE a(3) = 2, because M = [1; -1/2 1; 1/6 -1 1; ...], M^(-1) = [1; 1/2 1; 1/3 1 1; ...], and (1/3)*3! = 2. MAPLE P:= proc(n) option remember; local i, u, x; u:= bernoulli; `if`(n=0, u(0), unapply(expand(u(n) +x *add(u(i) *P(n-i-1)(x), i=0..n-1)), x)) end: a:= n-> (1/Matrix(n, (i, j)-> coeff(P(i-1)(x), x, j-1)))[n, 1] *n!: seq(a(n), n=1..30);  # Alois P. Heinz, Oct 12 2009 MATHEMATICA p[0, x_] = BernoulliB[0]; p[n_, x_] := p[n, x] = BernoulliB[n] + x*Sum[BernoulliB[i]*p[n-i-1, x], {i, 0, n-1}]; t[m_] := Table[ PadRight[CoefficientList[p[n, x], x], m+1], {n, 0, m}]; mmax = 20; Inverse[t[mmax-1]][[All, 1]]*Range[mmax]! (* Jean-François Alcover, Jun 29 2011 *) CROSSREFS Cf. A027641/A027642, A130620, A141411. Sequence in context: A081920 A224978 A006390 * A022562 A341360 A320954 Adjacent sequences:  A100594 A100595 A100596 * A100598 A100599 A100600 KEYWORD sign AUTHOR Paul Curtz, Jun 06 2007 EXTENSIONS Edited and more terms from Alois P. Heinz, Oct 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 07:28 EDT 2021. Contains 347596 sequences. (Running on oeis4.)