The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081920 Expansion of exp(2x)/sqrt(1-x^2). 4
 1, 2, 5, 14, 49, 202, 1069, 6470, 48353, 391058, 3767029, 37936318, 445650385, 5359634906, 74198053661, 1036667808758, 16516851030721, 262805595346210, 4735033850606437, 84510767762583662, 1698609728377283441 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A081919 LINKS Robert Israel, Table of n, a(n) for n = 0..449 FORMULA E.g.f. exp(2x)/sqrt(1-x^2). Conjecture: a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012 Conjecture confirmed using d.e. (x^2-1)*y' + (-2*x^2+x+2)*y = 0 satisfied by the E.g.f. - Robert Israel, Feb 19 2018 a(n) ~ n^n * (exp(2)+(-1)^n*exp(-2)) / exp(n). - Vaclav Kotesovec, Feb 04 2014 MAPLE f:= gfun:-rectoproc({a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0, a(0)=1, a(1)=2, a(2)=5}, a(n), remember): map(f, [\$0..30]); # Robert Israel, Feb 19 2018 MATHEMATICA CoefficientList[Series[E^(2*x)/Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2014 *) CROSSREFS Cf. A081921. Sequence in context: A131236 A119499 A079452 * A224978 A006390 A100597 Adjacent sequences:  A081917 A081918 A081919 * A081921 A081922 A081923 KEYWORD easy,nonn AUTHOR Paul Barry, Apr 01 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 13:47 EDT 2021. Contains 345048 sequences. (Running on oeis4.)