login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081920
Expansion of exp(2x)/sqrt(1-x^2).
4
1, 2, 5, 14, 49, 202, 1069, 6470, 48353, 391058, 3767029, 37936318, 445650385, 5359634906, 74198053661, 1036667808758, 16516851030721, 262805595346210, 4735033850606437, 84510767762583662, 1698609728377283441
OFFSET
0,2
COMMENTS
Binomial transform of A081919
LINKS
FORMULA
E.g.f. exp(2x)/sqrt(1-x^2).
Conjecture: a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
Conjecture confirmed using d.e. (x^2-1)*y' + (-2*x^2+x+2)*y = 0 satisfied by the E.g.f. - Robert Israel, Feb 19 2018
a(n) ~ n^n * (exp(2)+(-1)^n*exp(-2)) / exp(n). - Vaclav Kotesovec, Feb 04 2014
MAPLE
f:= gfun:-rectoproc({a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0, a(0)=1, a(1)=2, a(2)=5}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Feb 19 2018
MATHEMATICA
CoefficientList[Series[E^(2*x)/Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2014 *)
CROSSREFS
Cf. A081921.
Sequence in context: A131236 A119499 A079452 * A224978 A006390 A100597
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 01 2003
STATUS
approved