login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100594
Floor of Pi^(2*n)/Zeta(2*n).
3
6, 90, 945, 9450, 93555, 924041, 9121612, 90030844, 888579011, 8769948429, 86555983552, 854273468992, 8431341566236, 83214006759229, 821289329637860, 8105800788023426, 80001047145799660, 789578687036411293
OFFSET
1,1
LINKS
EXAMPLE
a(1)=6 because Zeta(2*1)=Pi^2/6 implies Pi^2/Zeta(2)=6 and floor(6)=6.
a(6)=924041 because Zeta(2*6)=691/638512875*Pi^12 implies Pi^12/Zeta(12)=638512875/691 and floor(638512875/691)=924041.
MAPLE
seq(simplify(floor(Pi^(2*k)/Zeta(2*k))), k=1..24);
MATHEMATICA
Table[Floor[Pi^(2*n)/Zeta[2*n]], {n, 20}] (* Terry D. Grant, May 28 2017 *)
PROG
(PARI) {a(n)=if(n<1, 0, floor(-2*(2*n)!/(-4)^n/bernfrac(2*n)))} /* Michael Somos, Feb 18 2007 */
CROSSREFS
Sequence in context: A113404 A177283 A121607 * A091800 A336042 A353230
KEYWORD
nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 30 2004
STATUS
approved