login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100477
a(n) = 3*a(n-1) + 2*a(n-2) + a(n-3) if n>=3, otherwise a(n) = n.
3
0, 1, 2, 8, 29, 105, 381, 1382, 5013, 18184, 65960, 239261, 867887, 3148143, 11419464, 41422565, 150254766, 545028892, 1977018773, 7171368869, 26013173045, 94359275646, 342275541897, 1241558350028, 4503585409524
OFFSET
0,3
COMMENTS
Weighted sum of the three previous terms.
a(n+1) is the number of ways to tile a strip of length n with 3 colors of squares, 2 colors of dominos, and 1 color of tromino, with the restriction that if the first tile is a square, then it can only use two colors. - Greg Dresden and Bora Bursali, Aug 17 2023
FORMULA
From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: x*(1-x)/(1-3*x-2*x^2-x^3).
a(n) = A108153(n) - A108153(n-1). (End)
a(0)=0, a(1)=1, a(2)=2, a(n)=3*a(n-1)+2*a(n-2)+a(n-3). - Harvey P. Dale, Jun 19 2015
MATHEMATICA
RecurrenceTable[{a[n]== 3a[n-1] +2a[n-2] +a[n-3], a[0]==0, a[1]==1, a[2]==2}, a, {n, 0, 26}] (* or *)
CoefficientList[ Series[(x^2-x)/(x^3+2x^2+3x-1), {x, 0, 26}], x] (* Robert G. Wilson v, May 19 2015 *)
LinearRecurrence[{3, 2, 1}, {0, 1, 2}, 40] (* Harvey P. Dale, Jun 19 2015 *)
PROG
(Perl) #!/usr/local/bin/perl -w $d=0; $c=1; $b=2; print "$d, $c, $b, "; $a=0; for (;; ){ $a=3*$b+2*$c+$d; $d=$c; $c=$b; $b=$a; print "$a, "; last if ($a >2**61); } __END__
(Magma) [n le 3 select n-1 else 3*Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, May 20 2015
(SageMath)
@CachedFunction
def a(n): # a = A100477
if (n<3): return n
else: return 3*a(n-1)+2*a(n-2)+a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Apr 06 2023
CROSSREFS
Cf. A108153.
Sequence in context: A378427 A208973 A365761 * A302266 A369268 A369299
KEYWORD
nonn,easy
AUTHOR
gamo (gamo(AT)telecable.es), Nov 22 2004
STATUS
approved