Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 25 2023 12:18:45
%S 0,1,2,8,29,105,381,1382,5013,18184,65960,239261,867887,3148143,
%T 11419464,41422565,150254766,545028892,1977018773,7171368869,
%U 26013173045,94359275646,342275541897,1241558350028,4503585409524
%N a(n) = 3*a(n-1) + 2*a(n-2) + a(n-3) if n>=3, otherwise a(n) = n.
%C Weighted sum of the three previous terms.
%C a(n+1) is the number of ways to tile a strip of length n with 3 colors of squares, 2 colors of dominos, and 1 color of tromino, with the restriction that if the first tile is a square, then it can only use two colors. - _Greg Dresden_ and Bora Bursali, Aug 17 2023
%H G. C. Greubel, <a href="/A100477/b100477.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,1).
%F From _R. J. Mathar_, Aug 22 2008: (Start)
%F O.g.f.: x*(1-x)/(1-3*x-2*x^2-x^3).
%F a(n) = A108153(n) - A108153(n-1). (End)
%F a(0)=0, a(1)=1, a(2)=2, a(n)=3*a(n-1)+2*a(n-2)+a(n-3). - _Harvey P. Dale_, Jun 19 2015
%t RecurrenceTable[{a[n]== 3a[n-1] +2a[n-2] +a[n-3], a[0]==0, a[1]==1, a[2]==2}, a, {n,0,26}] (* or *)
%t CoefficientList[ Series[(x^2-x)/(x^3+2x^2+3x-1), {x,0,26}], x] (* _Robert G. Wilson v_, May 19 2015 *)
%t LinearRecurrence[{3,2,1},{0,1,2},40] (* _Harvey P. Dale_, Jun 19 2015 *)
%o (Perl) #!/usr/local/bin/perl -w $d=0; $c=1; $b=2; print "$d,$c,$b,"; $a=0; for (;;){ $a=3*$b+2*$c+$d; $d=$c; $c=$b; $b=$a; print "$a,"; last if ($a >2**61); } __END__
%o (Magma) [n le 3 select n-1 else 3*Self(n-1)+2*Self(n-2)+Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, May 20 2015
%o (SageMath)
%o @CachedFunction
%o def a(n): # a = A100477
%o if (n<3): return n
%o else: return 3*a(n-1)+2*a(n-2)+a(n-3)
%o [a(n) for n in range(41)] # _G. C. Greubel_, Apr 06 2023
%Y Cf. A108153.
%K nonn,easy
%O 0,3
%A gamo (gamo(AT)telecable.es), Nov 22 2004