login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100099
An inverse Chebyshev transform of x/(1-2x).
1
0, 1, 2, 7, 16, 46, 110, 295, 720, 1870, 4612, 11782, 29224, 73984, 184102, 463687, 1156000, 2902870, 7245020, 18161170, 45356736, 113576596, 283765132, 710118262, 1774619616, 4439253196, 11095532840, 27749232700, 69363052600
OFFSET
0,3
COMMENTS
Image of x/(1-2x) under the transform g(x)->(1/sqrt(1-4x^2)g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))A(x/(1+x^2).
Hankel transform is A125905(n-1), the alternating sign version of A001353. - Paul Barry, Nov 25 2007
LINKS
FORMULA
G.f.: sqrt(1-4x^2)(sqrt(1-4x^2)+4x-1)/(2(5x-2)(4x^2-1)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(2^(n-2*k)-0^(n-2*k))/2.
a(n) = Sum_{k=0..n} C(n,floor(k/2))*A001045(n-k). - Paul Barry, Nov 25 2007
Conjecture: 2n*a(n) +(-13n+16)*a(n-1) +4(3n-8)*a(n-2) +4(13n-29)*a(n-3) +80(3-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 5^n / 2^(n+1). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+4*x-1)/(2*(5*x-2)*(4*x^2-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
CROSSREFS
Sequence in context: A178945 A309561 A026571 * A164267 A184352 A368421
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 04 2004
STATUS
approved