login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164267
A Fibonacci convolution.
2
0, 1, 2, 7, 16, 46, 114, 309, 792, 2101, 5456, 14356, 37468, 98281, 256998, 673323, 1761984, 4614226, 12078110, 31624285, 82787980, 216750601, 567446112, 1485616392, 3889356696, 10182528721, 26658108074, 69791991919, 182717549872
OFFSET
0,3
FORMULA
G.f.: x/((1+x-x^2)(1-3x+x^2)).
a(n) = Sum_{k=0..n} (-1)^k*F(k+1)*F(2(n-k)).
a(n) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-(-1)^(n-k))/2.
a(n) = 2*a(n-1) + 3*a(n-2) - 4*a(n-3) + a(n-4).
a(n) = (A122367(n) - A039834(n-1))/2. - R. J. Mathar, Aug 17 2009
MATHEMATICA
LinearRecurrence[{2, 3, -4, 1}, {0, 1, 2, 7}, 30] (* Harvey P. Dale, Jul 12 2011 *)
CoefficientList[Series[x / ((1 + x - x^2) (1 - 3 x + x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 13 2017 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(x/((1+x-x^2)*(1-3*x+x^2)))) \\ G. C. Greubel, Sep 12 2017
(Magma) I:=[0, 1, 2, 7]; [n le 4 select I[n] else 2*Self(n-1)+3*Self(n-2)-4*Self(n-3)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Sep 13 2017
CROSSREFS
Sequence in context: A309561 A026571 A100099 * A184352 A368421 A248114
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 11 2009
STATUS
approved