Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Aug 30 2024 21:41:23
%S 0,1,2,7,16,46,110,295,720,1870,4612,11782,29224,73984,184102,463687,
%T 1156000,2902870,7245020,18161170,45356736,113576596,283765132,
%U 710118262,1774619616,4439253196,11095532840,27749232700,69363052600
%N An inverse Chebyshev transform of x/(1-2x).
%C Image of x/(1-2x) under the transform g(x)->(1/sqrt(1-4x^2)g(xc(x^2)), where c(x) is the g.f. of the Catalan numbers A000108. This is the inverse of the Chebyshev transform which takes A(x) to ((1-x^2)/(1+x^2))A(x/(1+x^2).
%C Hankel transform is A125905(n-1), the alternating sign version of A001353. - _Paul Barry_, Nov 25 2007
%H Vincenzo Librandi, <a href="/A100099/b100099.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: sqrt(1-4x^2)(sqrt(1-4x^2)+4x-1)/(2(5x-2)(4x^2-1)).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*(2^(n-2*k)-0^(n-2*k))/2.
%F a(n) = Sum_{k=0..n} C(n,floor(k/2))*A001045(n-k). - _Paul Barry_, Nov 25 2007
%F Conjecture: 2n*a(n) +(-13n+16)*a(n-1) +4(3n-8)*a(n-2) +4(13n-29)*a(n-3) +80(3-n)*a(n-4)=0. - _R. J. Mathar_, Dec 14 2011
%F a(n) ~ 5^n / 2^(n+1). - _Vaclav Kotesovec_, Feb 01 2014
%t CoefficientList[Series[Sqrt[1-4*x^2]*(Sqrt[1-4*x^2]+4*x-1)/(2*(5*x-2)*(4*x^2-1)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 01 2014 *)
%K easy,nonn
%O 0,3
%A _Paul Barry_, Nov 04 2004