This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099867 a(n) = 5*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=9. 2
 1, 9, 44, 211, 1011, 4844, 23209, 111201, 532796, 2552779, 12231099, 58602716, 280782481, 1345309689, 6445765964, 30883520131, 147971834691, 708975653324, 3396906431929, 16275556506321, 77980876099676, 373628823992059, 1790163243860619, 8577187395311036 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pps. 245-252. Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (5,-1). FORMULA |2*a(n) + A099868(n) - A003501(n+1)| = 20*A004254(n). From R. J. Mathar, Sep 11 2008: (Start) G.f.: (1+4*x) / (1-5*x+x^2). a(n) = A004254(n+1) + 4*A004254(n). (End) a(n) = 2^(-1-n)*((5-sqrt(21))^n*(-13+sqrt(21)) + (5+sqrt(21))^n*(13+sqrt(21))) / sqrt(21). - Colin Barker, Mar 31 2017 MATHEMATICA a[0] = 1; a[1] = 9; a[n_] := a[n] = 5 a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, Dec 14 2004 *) LinearRecurrence[{5, -1}, {1, 9}, 30] (* or *) CoefficientList[Series[(1 + 4 x)/(1 - 5 x + x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 26 2011 *) PROG (MAGMA) I:=[1, 9]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 30 2015 (PARI) Vec((1+4*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 31 2017 CROSSREFS Cf. A099868, A003501, A004254. Sequence in context: A084903 A034558 A144109 * A228603 A297491 A104470 Adjacent sequences:  A099864 A099865 A099866 * A099868 A099869 A099870 KEYWORD nonn,easy AUTHOR Creighton Dement, Oct 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 19:01 EST 2018. Contains 318049 sequences. (Running on oeis4.)