The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099868 a(n) = 5*a(n-1) - a(n-2), a(0) = 3, a(1) = 25. 2
3, 25, 122, 585, 2803, 13430, 64347, 308305, 1477178, 7077585, 33910747, 162476150, 778470003, 3729873865, 17870899322, 85624622745, 410252214403, 1965636449270, 9417930031947, 45124013710465, 216202138520378, 1035886678891425, 4963231255936747 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
Tanya Khovanova, Recursive Sequences
FORMULA
|2*A099867(n) + a(n) - A003501(n+1)| = 20*A004254(n)
G.f.: (3 + 10*x) / (1 - 5*x + x^2). - Emeric Deutsch, Dec 03 2004
a(n) = (2^(-1-n)*((5-sqrt(21))^n*(-35+3*sqrt(21)) + (5+sqrt(21))^n*(35+3*sqrt(21)))) / sqrt(21). - Colin Barker, Mar 28 2017
MAPLE
a[0]:=3: a[1]:=25: for n from 2 to 30 do a[n]:=5*a[n-1]-a[n-2] od: seq(a[n], n=0..25);
MATHEMATICA
LinearRecurrence[{5, -1}, {3, 25}, 30] (* G. C. Greubel, Nov 20 2018 *)
PROG
(PARI) Vec((3+10*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 28 2017
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3 +10*x)/(1-5*x+x^2))); // G. C. Greubel, Nov 20 2018
(Sage) s=((3+10*x)/(1-5*x+x^2)).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 20 2018
(GAP) a:=[3, 25];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Nov 20 2018
CROSSREFS
Sequence in context: A165206 A095664 A215773 * A243228 A112495 A034578
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Oct 28 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 07:15 EDT 2024. Contains 372782 sequences. (Running on oeis4.)