login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098957
Decimal value of the reverse binary expansion of the prime numbers.
8
1, 3, 5, 7, 13, 11, 17, 25, 29, 23, 31, 41, 37, 53, 61, 43, 55, 47, 97, 113, 73, 121, 101, 77, 67, 83, 115, 107, 91, 71, 127, 193, 145, 209, 169, 233, 185, 197, 229, 181, 205, 173, 253, 131, 163, 227, 203, 251, 199, 167, 151, 247, 143, 223, 257, 449, 353, 481, 337
OFFSET
1,2
COMMENTS
15 of the first 16 terms happen to be prime. As terms increase, the preponderance of primes apparently decreases.
LINKS
FORMULA
a(n) = decimal(reverse(binary(prime(n)))) where prime(n) is the n-th prime.
a(n) = A030101(A000040(n)). - Rémy Sigrist, Oct 19 2022
EXAMPLE
a(14) = 53 because the 14th prime is 43, or 101011 binary; reverse of 101011 is 110101, or 53 decimal.
MAPLE
a:= proc(n) local m, r; m, r:= ithprime(n), 0;
while m>0 do r:= r*2+irem(m, 2, 'm') od; r
end:
seq(a(n), n=1..60); # Alois P. Heinz, Mar 08 2018
MATHEMATICA
Table[FromDigits[Reverse[IntegerDigits[Prime[n], 2]], 2], {n, 100}] (* Alonso del Arte, Mar 05 2018 *)
PROG
(PARI) a(n)=my(v=binary(prime(n)), s); forstep(i=#v, 1, -1, s+=s+v[i]); s \\ Charles R Greathouse IV, Aug 17 2011
(Python)
from sympy import prime
def A098957(n): return int(bin(prime(n))[:1:-1], 2) # Chai Wah Wu, Feb 17 2022
CROSSREFS
Sequence in context: A137576 A161329 A111745 * A143245 A018205 A370762
KEYWORD
base,nonn
AUTHOR
Gil Broussard, Oct 21 2004
STATUS
approved