login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097438
a(n) = Sum_{k|n} a(k) a(n-k) for n >= 2, a(0)=0, a(1)=1.
1
0, 1, 1, 1, 2, 2, 5, 5, 14, 19, 37, 37, 146, 146, 317, 537, 1342, 1342, 4312, 4312, 13751, 19648, 34768, 34768, 178350, 205852, 405518, 665796, 1626743, 1626743, 6019892, 6019892, 19591134, 26897442, 48289540, 68463039, 270214317, 270214317
OFFSET
0,5
COMMENTS
If k in the sum in the definition is taken only over the proper divisors of n, the sequence is the same.
a(p) = a(p-1) if p is a prime. - Robert G. Wilson v, Aug 23 2004
LINKS
EXAMPLE
a(8) = a(1)*a(7) + a(2)*a(6) + a(4)*a(4) + a(8)*a(0) = 5 + 5 + 4 + 0 = 14.
MAPLE
a:= proc(n) option remember; `if`(n<2, n, add(
a(d)*a(n-d), d=numtheory[divisors](n) minus {n}))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 26 2015
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = Block[{d = Drop[ Divisors[n], -1]}, Plus @@ Flatten[(a /@ d)*(a /@ (n - d))]]; Table[ a[n], {n, 0, 38}] (* Robert G. Wilson v, Aug 23 2004 *)
CROSSREFS
Sequence in context: A098887 A259097 A245845 * A205482 A055879 A056470
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 22 2004
EXTENSIONS
More terms from Robert G. Wilson v, Aug 23 2004
STATUS
approved