login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k|n} a(k) a(n-k) for n >= 2, a(0)=0, a(1)=1.
1

%I #12 Jul 26 2015 18:50:08

%S 0,1,1,1,2,2,5,5,14,19,37,37,146,146,317,537,1342,1342,4312,4312,

%T 13751,19648,34768,34768,178350,205852,405518,665796,1626743,1626743,

%U 6019892,6019892,19591134,26897442,48289540,68463039,270214317,270214317

%N a(n) = Sum_{k|n} a(k) a(n-k) for n >= 2, a(0)=0, a(1)=1.

%C If k in the sum in the definition is taken only over the proper divisors of n, the sequence is the same.

%C a(p) = a(p-1) if p is a prime. - _Robert G. Wilson v_, Aug 23 2004

%H Alois P. Heinz, <a href="/A097438/b097438.txt">Table of n, a(n) for n = 0..1000</a>

%e a(8) = a(1)*a(7) + a(2)*a(6) + a(4)*a(4) + a(8)*a(0) = 5 + 5 + 4 + 0 = 14.

%p a:= proc(n) option remember; `if`(n<2, n, add(

%p a(d)*a(n-d), d=numtheory[divisors](n) minus {n}))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jul 26 2015

%t a[0] = 0; a[1] = 1; a[n_] := a[n] = Block[{d = Drop[ Divisors[n], -1]}, Plus @@ Flatten[(a /@ d)*(a /@ (n - d))]]; Table[ a[n], {n, 0, 38}] (* _Robert G. Wilson v_, Aug 23 2004 *)

%K nonn

%O 0,5

%A _Leroy Quet_, Aug 22 2004

%E More terms from _Robert G. Wilson v_, Aug 23 2004