login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205482
G.f.: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + d*x^n)^d ).
8
1, 1, 2, 2, 5, 5, 15, 15, 34, 46, 84, 96, 246, 282, 512, 696, 1421, 1713, 3436, 4084, 8227, 10821, 19128, 23258, 48474, 60943, 106780, 139313, 252748, 322577, 600660, 760872, 1365570, 1807979, 3064882, 3951491, 7358684, 9476993, 15962935, 21243381
OFFSET
0,3
COMMENTS
Note: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + x^n)^d ) does not yield an integer series.
FORMULA
Logarithmic derivative yields A205483.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 + 15*x^6 + 15*x^7 + ...
By definition:
log(A(x)) = x*(1+x) + x^2*(1+x^2)*(1+2*x^2)^2/2 + x^3*(1+x^3)*(1+3*x^3)^3/3 + x^4*(1+x^4)*(1+2*x^4)^2*(1+4*x^4)^4/4 + x^5*(1+x^5)*(1+5*x^5)^5/5 + x^6*(1+x^6)*(1+2*x^6)^2*(1+3*x^6)^3*(1+6*x^6)^6/6 + ...
Explicitly,
log(A(x)) = x + 3*x^2/2 + x^3/3 + 11*x^4/4 + x^5/5 + 45*x^6/6 + x^7/7 + 59*x^8/8 + 109*x^9/9 + 53*x^10/10 + ... + A205483(n)*x^n/n + ...
MATHEMATICA
max = 40; s = Exp[Sum[(x^n/n)*Product[(1 + d*x^n)^d, {d, Divisors[n]}], {n, 1, max}]] + O[x]^max; CoefficientList[s , x] (* Jean-François Alcover, Dec 23 2015 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, d*log(1+d*x^m+x*O(x^n)))))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 27 2012
STATUS
approved