login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + d*x^n)^d ).
8

%I #13 Oct 08 2018 21:07:46

%S 1,1,2,2,5,5,15,15,34,46,84,96,246,282,512,696,1421,1713,3436,4084,

%T 8227,10821,19128,23258,48474,60943,106780,139313,252748,322577,

%U 600660,760872,1365570,1807979,3064882,3951491,7358684,9476993,15962935,21243381

%N G.f.: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + d*x^n)^d ).

%C Note: exp( Sum_{n>=1} x^n/n * Product_{d|n} (1 + x^n)^d ) does not yield an integer series.

%F Logarithmic derivative yields A205483.

%e G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 + 15*x^6 + 15*x^7 + ...

%e By definition:

%e log(A(x)) = x*(1+x) + x^2*(1+x^2)*(1+2*x^2)^2/2 + x^3*(1+x^3)*(1+3*x^3)^3/3 + x^4*(1+x^4)*(1+2*x^4)^2*(1+4*x^4)^4/4 + x^5*(1+x^5)*(1+5*x^5)^5/5 + x^6*(1+x^6)*(1+2*x^6)^2*(1+3*x^6)^3*(1+6*x^6)^6/6 + ...

%e Explicitly,

%e log(A(x)) = x + 3*x^2/2 + x^3/3 + 11*x^4/4 + x^5/5 + 45*x^6/6 + x^7/7 + 59*x^8/8 + 109*x^9/9 + 53*x^10/10 + ... + A205483(n)*x^n/n + ...

%t max = 40; s = Exp[Sum[(x^n/n)*Product[(1 + d*x^n)^d, {d, Divisors[n]}], {n, 1, max}]] + O[x]^max; CoefficientList[s , x] (* _Jean-François Alcover_, Dec 23 2015 *)

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, d*log(1+d*x^m+x*O(x^n)))))), n)}

%Y Cf. A205483 (log), A205476, A205478, A205480, A205484, A205486, A205488, A205490.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 27 2012