OFFSET
0,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..20000
Vaclav Kotesovec, Graph - the asymptotic ratio
FORMULA
a(n^2) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.1582087202672504149766310999238... [see A206226, constant c(1)]. The upper bound of a(n) is c * d^sqrt(n) / n, see graph. For the lower bound, the constant c = 0.088154883798697116... (conjectured). - Vaclav Kotesovec, Jan 08 2024
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
end:
a:= n-> b(n, (r-> `if`(r*r>n, r-1, r))(isqrt(n))):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 02 2018
MATHEMATICA
Table[Length[IntegerPartitions[n, Floor[Sqrt[n]]]], {n, 70}] (* Harvey P. Dale, May 11 2011 *)
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; Table[ f[n, Floor[Sqrt[n]]], {n, 53}] (* Robert G. Wilson v, Aug 13 2011 *)
PROG
(Haskell)
a097356 n = p [1..a000196 n] n where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
(PARI) a(n, k=sqrtint(n))=if(min(n, k)<2, 1, sum(i=1, min(k, n), a(n-i, i))) \\ Charles R Greathouse IV, Aug 12 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 08 2004
STATUS
approved