login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097356
Number of partitions of n into parts not greater than sqrt(n).
15
1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 16475, 18138, 19928, 21873, 23961
OFFSET
0,5
LINKS
FORMULA
a(n^2) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.1582087202672504149766310999238... [see A206226, constant c(1)]. The upper bound of a(n) is c * d^sqrt(n) / n, see graph. For the lower bound, the constant c = 0.088154883798697116... (conjectured). - Vaclav Kotesovec, Jan 08 2024
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
end:
a:= n-> b(n, (r-> `if`(r*r>n, r-1, r))(isqrt(n))):
seq(a(n), n=0..100); # Alois P. Heinz, Aug 02 2018
MATHEMATICA
Table[Length[IntegerPartitions[n, Floor[Sqrt[n]]]], {n, 70}] (* Harvey P. Dale, May 11 2011 *)
f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; Table[ f[n, Floor[Sqrt[n]]], {n, 53}] (* Robert G. Wilson v, Aug 13 2011 *)
PROG
(Haskell)
a097356 n = p [1..a000196 n] n where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
(PARI) a(n, k=sqrtint(n))=if(min(n, k)<2, 1, sum(i=1, min(k, n), a(n-i, i))) \\ Charles R Greathouse IV, Aug 12 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 08 2004
STATUS
approved