OFFSET
0,2
COMMENTS
Similar to A000537, which counts all possible rectangles in an n X n array of squares. In this sequence we count the rectangles in an a X b array of squares, where a=2^floor(n/2) and b=2^ceiling(n/2). Note that a(n) is the product of two triangular numbers.
FORMULA
a(n) = a b (a+1) (b+1)/4, where a=2^floor(n/2) and b=2^ceiling(n/2).
a(n) (mod 10^k) is cyclic. For (mod 10) the cycle is 0, 0, 0, 6, 6, 6, 8, 4. - Robert G. Wilson v, Jul 31 2004
Conjectures from Colin Barker, Feb 04 2020: (Start)
G.f.: (1 - 3*x - 9*x^2 + 24*x^3) / ((1 - 2*x)*(1 - 4*x)*(1 - 8*x^2)).
a(n) = 6*a(n-1) - 48*a(n-3) + 64*a(n-4) for n>3.
(End)
EXAMPLE
a(1) = 3: fold a 1 X 2 rectangle down the middle; there are 3 rectangles, the one on the left, the one on the right and the one we started with. a(2) = 9 : fold a 2 X 2 rectangle along the X and Y axes; there 4 rectangles of size 1 X 1, 4 of size 1 X 2 or 2 X 1 and 1 of size 2 X 2.
MATHEMATICA
Table[a=2^Floor[n/2]; b=2^Ceiling[n/2]; Sum[i*j, {i, a}, {j, b}], {n, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Bill Liebeskind (billlieb(AT)hotmail.com), Jul 29 2004
EXTENSIONS
Edited by T. D. Noe, Jul 30 2004
More terms from Robert G. Wilson v, Jul 31 2004
STATUS
approved