|
|
A096199
|
|
Numbers such that in binary representation the length is a multiple of the number of ones.
|
|
5
|
|
|
1, 2, 3, 4, 7, 8, 9, 10, 12, 15, 16, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 48, 49, 50, 52, 56, 63, 64, 127, 128, 129, 130, 132, 135, 136, 139, 141, 142, 144, 147, 149, 150, 153, 154, 156, 160, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 192, 195, 197
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A070939(a(n)) mod A000120(a(n)) = 0;
A000079 and A000225 (> 0) are subsequences.
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 1..10674 (all terms up to 2^16)
Index entries for sequences related to binary expansion of n
|
|
EXAMPLE
|
400 -> '110010000' with 3 binary ones and length = 9 = 3*3, therefore 400 is a term.
|
|
MAPLE
|
q:= n-> (l-> irem(nops(l), add(i, i=l))=0)(Bits[Split](n)):
select(q, [$1..200])[]; # Alois P. Heinz, Feb 04 2022
|
|
MATHEMATICA
|
lmnQ[n_]:=Module[{idn2=IntegerDigits[n, 2]}, Divisible[Length[idn2], Count[ idn2, 1]]]; Select[Range[200], lmnQ] (* Harvey P. Dale, Jul 27 2019 *)
|
|
PROG
|
(Perl)
$cnt=1; foreach $n(1..100_000){$_=sprintf ("%b", $n); print $cnt++, " $n\n" unless (length)%s/1//g; }
|
|
CROSSREFS
|
Cf. A007088, A049445.
Sequence in context: A330217 A231003 A171551 * A104576 A332485 A031477
Adjacent sequences: A096196 A096197 A096198 * A096200 A096201 A096202
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Reinhard Zumkeller, Jul 26 2004
|
|
STATUS
|
approved
|
|
|
|