

A095673


Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.


8



1069, 1759, 1913, 3803, 4463, 4603, 8329, 9109, 9749, 11633, 12619, 12763, 15199, 16993, 17299, 17449, 19163, 20029, 20183, 21943, 22349, 22409, 22549, 22943, 23209, 23339, 24709, 25373, 26209, 26783, 26993, 28669, 28979, 29723, 29959
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes that are third prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


MATHEMATICA

m = 3; Prime[1 + Select[ Range[3300], Prime[ # + 2]  2*Prime[ # + 1] + Prime[ # ]  4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[4000]], 3, 1], #[[1]]+#[[3]]== 2#[[2]] +12&]][[2]] (* Harvey P. Dale, Apr 18 2015 *)


CROSSREFS

Cf. A095419, A095420, A095648, A095649, A095650, A095651, A095672.
Sequence in context: A145299 A328894 A289702 * A252569 A020386 A236870
Adjacent sequences: A095670 A095671 A095672 * A095674 A095675 A095676


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Jul 02 2004


EXTENSIONS

Edited and extended by Robert G. Wilson v, Jul 14 2004
Edited by N. J. A. Sloane, Nov 07 2005


STATUS

approved



