

A095649


Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 8.


8



139, 181, 241, 283, 421, 467, 811, 829, 953, 1021, 1051, 1153, 1259, 1307, 1699, 1723, 1831, 1879, 2029, 2089, 2143, 2221, 2251, 2297, 2357, 2423, 2621, 2731, 3001, 3191, 3347, 3361, 3583, 3769, 3823, 3853, 4139, 4219, 4231, 4243, 4261, 4273, 4339, 4373
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes that are second prime chords.
These come from music based on the prime differences where the chords are an even number of note steps from the primary note.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


MATHEMATICA

m = 2; Prime[ 1 + Select[ Range[600], Prime[ # + 2]  2*Prime[ # + 1] + Prime[ # ]  4*m == 0 &]] (* Robert G. Wilson v, Jul 14 2004 *)
Transpose[Select[Partition[Prime[Range[600]], 3, 1], #[[1]]+#[[3]]==2#[[2]]+ 8&]][[2]] (* Harvey P. Dale, Feb 26 2015 *)


CROSSREFS

Cf. A095419, A095420, A095648, A095650, A095651, A095672, A095673.
Sequence in context: A290450 A209618 A031928 * A016067 A142524 A108383
Adjacent sequences: A095646 A095647 A095648 * A095650 A095651 A095652


KEYWORD

nonn


AUTHOR

Roger L. Bagula, Jul 02 2004


EXTENSIONS

Edited by Robert G. Wilson v, Jul 14 2004
Description corrected by N. J. A. Sloane, Jul 19 2004


STATUS

approved



