login
Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.
8

%I #12 Jul 24 2015 23:18:26

%S 1069,1759,1913,3803,4463,4603,8329,9109,9749,11633,12619,12763,15199,

%T 16993,17299,17449,19163,20029,20183,21943,22349,22409,22549,22943,

%U 23209,23339,24709,25373,26209,26783,26993,28669,28979,29723,29959

%N Primes p = p_(n+1) such that p_n + p_(n+2) = 2*p_(n+1) + 12.

%C Primes that are third prime chords.

%C These come from music based on the prime differences where the chords are an even number of note steps from the primary note.

%H Harvey P. Dale, <a href="/A095673/b095673.txt">Table of n, a(n) for n = 1..1000</a>

%t m = 3; Prime[1 + Select[ Range[3300], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &]] (* _Robert G. Wilson v_, Jul 14 2004 *)

%t Transpose[Select[Partition[Prime[Range[4000]],3,1],#[[1]]+#[[3]]== 2#[[2]] +12&]][[2]] (* _Harvey P. Dale_, Apr 18 2015 *)

%Y Cf. A095419, A095420, A095648, A095649, A095650, A095651, A095672.

%K nonn

%O 1,1

%A _Roger L. Bagula_, Jul 02 2004

%E Edited and extended by _Robert G. Wilson v_, Jul 14 2004

%E Edited by _N. J. A. Sloane_, Nov 07 2005