The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095050 Numbers such that all ten digits are needed to write all positive divisors in decimal representation. 17
 108, 216, 270, 304, 306, 312, 324, 360, 380, 406, 432, 450, 504, 540, 570, 608, 612, 624, 630, 648, 654, 702, 708, 714, 720, 728, 756, 760, 780, 810, 812, 864, 870, 900, 910, 912, 918, 924, 936, 945, 954, 972, 980, 1008, 1014, 1026, 1032, 1036, 1038 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A095048(a(n)) = 10. Numbers n such that A037278(n), A176558(n) and A243360(n) contain 10 distinct digits. - Jaroslav Krizek, Jun 19 2014 Once a number is in the sequence, then all its multiples will be there too. The list of primitive terms begin: 108, 270, 304, 306, 312, 360, 380, ... - Michel Marcus, Jun 20 2014 Pandigital numbers A050278 and A171102 are subsequences. - Michel Marcus, May 01 2020 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 EXAMPLE Divisors of 108 are: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108] where all digits can be found. MAPLE q:= n-> is({\$0..9}=map(x-> convert(x, base, 10)[], numtheory[divisors](n))): select(q, [\$1..2000])[];  # Alois P. Heinz, Oct 28 2021 MATHEMATICA Select[Range@2000, 1+Union@@IntegerDigits@Divisors@# == Range@10 &] (* Hans Rudolf Widmer, Oct 28 2021 *) PROG (Haskell) import Data.List (elemIndices) a095050 n = a095050_list !! (n-1) a095050_list = map (+ 1) \$ elemIndices 10 \$ map a095048 [1..] -- Reinhard Zumkeller, Feb 05 2012 (PARI) isok(m) = {my(d=divisors(m), v=[1]); for (k=2, #d, v = Set(concat(v, digits(d[k]))); if (#v == 10, return (1)); ); #v == 10; } \\ Michel Marcus, May 01 2020 (Python) from sympy import divisors def ok(n):     digits_used = set()     for d in divisors(n):         digits_used |= set(str(d))     return len(digits_used) == 10 print([k for k in range(1040) if ok(k)]) # Michael S. Branicky, Oct 28 2021 CROSSREFS Cf. A095048, A059436 (subsequence), A206159. Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits). Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050. - Jaroslav Krizek, Jun 19 2014 Cf. A050278, A171102. Sequence in context: A344702 A044340 A044721 * A339983 A275996 A235292 Adjacent sequences:  A095047 A095048 A095049 * A095051 A095052 A095053 KEYWORD nonn,base AUTHOR Reinhard Zumkeller, May 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 06:28 EST 2021. Contains 349419 sequences. (Running on oeis4.)