OFFSET
1,1
COMMENTS
A095048(a(n)) = 10.
Numbers n such that A037278(n), A176558(n) and A243360(n) contain 10 distinct digits. - Jaroslav Krizek, Jun 19 2014
Once a number is in the sequence, then all its multiples will be there too. The list of primitive terms begin: 108, 270, 304, 306, 312, 360, 380, ... - Michel Marcus, Jun 20 2014
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ n. - Charles R Greathouse IV, Nov 16 2022
EXAMPLE
Divisors of 108 are: [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108] where all digits can be found.
MAPLE
q:= n-> is({$0..9}=map(x-> convert(x, base, 10)[], numtheory[divisors](n))):
select(q, [$1..2000])[]; # Alois P. Heinz, Oct 28 2021
MATHEMATICA
Select[Range@2000, 1+Union@@IntegerDigits@Divisors@# == Range@10 &] (* Hans Rudolf Widmer, Oct 28 2021 *)
PROG
(Haskell)
import Data.List (elemIndices)
a095050 n = a095050_list !! (n-1)
a095050_list = map (+ 1) $ elemIndices 10 $ map a095048 [1..]
-- Reinhard Zumkeller, Feb 05 2012
(PARI) isok(m)=my(d=divisors(m), v=[1]); for (k=2, #d, v = Set(concat(v, digits(d[k]))); if (#v == 10, return (1)); ); #v == 10; \\ Michel Marcus, May 01 2020
(Python)
from sympy import divisors
def ok(n):
digits_used = set()
for d in divisors(n):
digits_used |= set(str(d))
return len(digits_used) == 10
print([k for k in range(1040) if ok(k)]) # Michael S. Branicky, Oct 28 2021
CROSSREFS
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, May 28 2004
STATUS
approved