

A094930


Triangle T(n,m) read by rows, defined by squaring a matrix with row entries 2+3*(m1).


3



4, 14, 25, 30, 65, 64, 52, 120, 152, 121, 80, 190, 264, 275, 196, 114, 275, 400, 462, 434, 289, 154, 375, 560, 682, 714, 629, 400, 200, 490, 744, 935, 1036, 1020, 860, 529, 252, 620, 952, 1221, 1400, 1462, 1380, 1127, 676, 310, 765, 1184, 1540, 1806, 1955, 1960
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Matrix square of the matrix B(n,m) = 2+3*(m1), B containing the first terms of A016789
in its row n, n>0, 1<=m<=n.


LINKS



FORMULA

T(n,m) = sum_{k=m..n} B(n,k)*B(k,m) = (3*m1)*(3*m+3*n2)*(n+1m)/2.
Row sums: sum_{m=1..n} T(n,m) = A024212(n).
G.f. as triangle: x*y*(4+2*x+13*x*y16*x^2*y+x^2*y^24*x^3*y^2)/((1x)*(1x*y))^3.  Robert Israel, May 06 2019


EXAMPLE

The matrix B starts as
2 ;
2,5 ;
2,5,8 ;
2,5,8,11 ;
2,5,8,11,14 ;
and interpreting this as a lower triangular matrix, its square T = B^2 starts
4;
14,25;
30,65,64;
52,120,152,121;


MAPLE



CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



