OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
FORMULA
G.f.: (1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2)).
a(n) ~ 3*n*2^(n-2) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: n*(3*n-5)*a(n) +4*(-3*n+4)*a(n-1) +4*(-6*n^2+13*n-1)*a(n-2) +8*(6*n-5)*a(n-3) +16*(3*n-2)*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 21 2018
D-finite with recurrence: n*a(n) -2*n*a(n-1) +4*(-2*n+3)*a(n-2) +8*(2*n-3)*a(n-3) +16*(n-3)*a(n-4) +32*(-n+3)*a(n-5)=0. - R. J. Mathar, Aug 21 2018
MATHEMATICA
CoefficientList[ Series[(1 + x - Sqrt[1 - 4*x^2])/((1 - 2*x)*(1 - 4*x^2)), {x, 0, 30}], x] (* Robert G. Wilson v, Jun 15 2004 *)
PROG
(PARI) x='x+O('x^50); Vec((1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2))) \\ G. C. Greubel, Feb 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Donatella Merlini (merlini(AT)dsi.unifi.it), Jun 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 16 2004
STATUS
approved