login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094893
Total area below the lattice paths of length n defined by the rule [(0),(k)->(k-1)(k+1)] (Dyck paths).
2
1, 4, 12, 34, 84, 212, 488, 1162, 2580, 5932, 12888, 28948, 61992, 136936, 290256, 633178, 1331892, 2877308, 6016760, 12897340, 26843256, 57175384, 118545072, 251163204, 519103624, 1094915512, 2256939888, 4742198632, 9752832720
OFFSET
1,2
LINKS
D. Merlini, Generating functions for the area below some lattice paths, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.
FORMULA
G.f.: (1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2)).
a(n) ~ 3*n*2^(n-2) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence: n*(3*n-5)*a(n) +4*(-3*n+4)*a(n-1) +4*(-6*n^2+13*n-1)*a(n-2) +8*(6*n-5)*a(n-3) +16*(3*n-2)*(n-2)*a(n-4)=0. - R. J. Mathar, Aug 21 2018
D-finite with recurrence: n*a(n) -2*n*a(n-1) +4*(-2*n+3)*a(n-2) +8*(2*n-3)*a(n-3) +16*(n-3)*a(n-4) +32*(-n+3)*a(n-5)=0. - R. J. Mathar, Aug 21 2018
MATHEMATICA
CoefficientList[ Series[(1 + x - Sqrt[1 - 4*x^2])/((1 - 2*x)*(1 - 4*x^2)), {x, 0, 30}], x] (* Robert G. Wilson v, Jun 15 2004 *)
PROG
(PARI) x='x+O('x^50); Vec((1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2))) \\ G. C. Greubel, Feb 16 2017
CROSSREFS
Sequence in context: A135373 A338695 A209818 * A036880 A349973 A107069
KEYWORD
nonn,easy
AUTHOR
Donatella Merlini (merlini(AT)dsi.unifi.it), Jun 16 2004
EXTENSIONS
More terms from Robert G. Wilson v, Jun 16 2004
STATUS
approved