login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036880
Number of partitions of 5n such that cn(0,5) <= cn(1,5) = cn(4,5) <= cn(2,5) = cn(3,5).
5
1, 4, 12, 34, 85, 203, 454, 985, 2060, 4205, 8363, 16298, 31103, 58319, 107471, 195037, 348795, 615550, 1072706, 1847867, 3148444, 5309948, 8869172, 14680261, 24090035, 39210436, 63327665, 101527253, 161626560, 255579456, 401556210, 627039569, 973374176
OFFSET
1,2
COMMENTS
Alternatively, number of partitions of 5n such that cn(0,5) <= cn(2,5) = cn(3,5) <= cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A202087(n) + A036883(n)
a(n) = A036884(n) + A036888(n)
MAPLE
mkl:= proc(i, l) local ll, mn, x; ll:= applyop(x->x+1, irem(i, 5)+1, l); mn:= min(ll[]); `if`(mn=0, ll, map(x->x-mn, ll)) end:
g:= proc (n, i, t) if n<0 then 0 elif n=0 then `if`(t[1]<=t[2] and t[2]=t[5] and t[5]<=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i=1 then g(0, 0, [t[1], t[2]+n, t[3], t[4], t[5]]) elif i=2 then `if`(t[3]>t[4], 0, g(n-2*(t[4]-t[3]), 1, [t[1], t[2], t[4], t[4], t[5]])) else g(n, i, t):= g(n, i-1, t) +g(n-i, i, mkl(i, t)) fi end:
a:= n-> g(5*n, 5*n, [0, 0, 0, 0, 0]):
seq(a(n), n=1..15); # Alois P. Heinz, Jul 02 2009
MATHEMATICA
mkl[i_, l_] := Module[{ll, mn, x}, ll = MapAt[#+1&, l, Mod[i, 5]+1]; mn = Min[ll]; If[mn==0, ll, Map[#-mn&, ll]]]; g[n_, i_, t_List] := g[n, i, t] = Which[n<0, 0, n == 0 , If[t[[1]] <= t[[2]] && t[[2]] == t[[5]] && t[[5]] <= t[[3]] && t[[3]] == t[[4]], 1, 0], i==0, 0, i==1, g[0, 0, {t[[1]], t[[2]]+n, t[[3]], t[[4]], t[[5]]}] , i==2, If[t[[3]]>t[[4]], 0, g[n-2*(t[[4]]-t[[3]]), 1, {t[[1]], t[[2]], t[[4]], t[[4]], t[[5]]}]], True, g[n, i-1, t] + g[n-i, i, mkl[i, t]]]; a[n_] := g[5*n, 5*n, {0, 0, 0, 0, 0}]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Jul 29 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A338695 A209818 A094893 * A349973 A107069 A191823
KEYWORD
nonn
EXTENSIONS
a(10)-a(31) from Alois P. Heinz, Jul 02 2009
Edited by Max Alekseyev, Dec 11 2011
a(32)-a(33) from Alois P. Heinz, Mar 12 2016
STATUS
approved