|
|
A036883
|
|
Number of partitions of 5n such that cn(0,5) <= cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).
|
|
5
|
|
|
1, 3, 7, 18, 45, 112, 263, 594, 1284, 2684, 5442, 10761, 20802, 39431, 73410, 134469, 242633, 431772, 758448, 1316294, 2258665, 3834699, 6445463, 10731790, 17709476, 28977664, 47036030, 75767355, 121164398, 192422933, 303572061, 475900075
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Alternatively, number of partitions of 5n such that cn(0,5) <= cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
|
|
LINKS
|
Table of n, a(n) for n=1..32.
Index and properties of sequences related to partitions of 5n
|
|
FORMULA
|
a(n) = A036880(n) - A202087(n)
a(n) = A036886(n) + A036893(n)
|
|
CROSSREFS
|
Sequence in context: A000226 A291734 A291229 * A247296 A191652 A191826
Adjacent sequences: A036880 A036881 A036882 * A036884 A036885 A036886
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Olivier Gérard
|
|
EXTENSIONS
|
Terms a(10) onward from Max Alekseyev, Dec 10 2011
|
|
STATUS
|
approved
|
|
|
|