login
Number of partitions of 5n such that cn(0,5) <= cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).
5

%I #10 Mar 30 2012 17:26:42

%S 1,3,7,18,45,112,263,594,1284,2684,5442,10761,20802,39431,73410,

%T 134469,242633,431772,758448,1316294,2258665,3834699,6445463,10731790,

%U 17709476,28977664,47036030,75767355,121164398,192422933,303572061,475900075

%N Number of partitions of 5n such that cn(0,5) <= cn(1,5) = cn(4,5) < cn(2,5) = cn(3,5).

%C Alternatively, number of partitions of 5n such that cn(0,5) <= cn(2,5) = cn(3,5) < cn(1,5) = cn(4,5).

%C For a given partition, cn(i,n) means the number of its parts equal to i modulo n.

%H <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>

%F a(n) = A036880(n) - A202087(n)

%F a(n) = A036886(n) + A036893(n)

%K nonn

%O 1,2

%A _Olivier GĂ©rard_

%E Terms a(10) onward from _Max Alekseyev_, Dec 10 2011