login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total area below the lattice paths of length n defined by the rule [(0),(k)->(k-1)(k+1)] (Dyck paths).
2

%I #22 Jan 29 2024 03:25:56

%S 1,4,12,34,84,212,488,1162,2580,5932,12888,28948,61992,136936,290256,

%T 633178,1331892,2877308,6016760,12897340,26843256,57175384,118545072,

%U 251163204,519103624,1094915512,2256939888,4742198632,9752832720

%N Total area below the lattice paths of length n defined by the rule [(0),(k)->(k-1)(k+1)] (Dyck paths).

%H G. C. Greubel, <a href="/A094893/b094893.txt">Table of n, a(n) for n = 1..1000</a>

%H D. Merlini, <a href="https://doi.org/10.46298/dmtcs.3323">Generating functions for the area below some lattice paths</a>, Discrete Mathematics and Theoretical Computer Science AC, 2003, 217-228.

%F G.f.: (1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2)).

%F a(n) ~ 3*n*2^(n-2) * (1-4*sqrt(2)/(3*sqrt(Pi*n))). - _Vaclav Kotesovec_, Mar 20 2014

%F D-finite with recurrence: n*(3*n-5)*a(n) +4*(-3*n+4)*a(n-1) +4*(-6*n^2+13*n-1)*a(n-2) +8*(6*n-5)*a(n-3) +16*(3*n-2)*(n-2)*a(n-4)=0. - _R. J. Mathar_, Aug 21 2018

%F D-finite with recurrence: n*a(n) -2*n*a(n-1) +4*(-2*n+3)*a(n-2) +8*(2*n-3)*a(n-3) +16*(n-3)*a(n-4) +32*(-n+3)*a(n-5)=0. - _R. J. Mathar_, Aug 21 2018

%t CoefficientList[ Series[(1 + x - Sqrt[1 - 4*x^2])/((1 - 2*x)*(1 - 4*x^2)), {x, 0, 30}], x] (* _Robert G. Wilson v_, Jun 15 2004 *)

%o (PARI) x='x+O('x^50); Vec((1+x-sqrt(1-4*x^2))/((1-2*x)*(1-4*x^2))) \\ _G. C. Greubel_, Feb 16 2017

%K nonn,easy

%O 1,2

%A Donatella Merlini (merlini(AT)dsi.unifi.it), Jun 16 2004

%E More terms from _Robert G. Wilson v_, Jun 16 2004