|
|
A094776
|
|
a(n) = largest k such that the decimal representation of 2^k does not contain the digit n.
|
|
24
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
These values are only conjectural.
The sequence could be extended to any nonnegative integer index n defining a(n) to be the largest k such that n does not appear as substring in the decimal expansion of 2^k. I conjecture that for n = 10, 11, 12, ... it continues (2000, 3020, 1942, 1465, 1859, 2507, 1950, 1849, 1850, ...). For example, curiously enough, the largest power of 2 in which the string "10" does not appear seems to be 2^2000. - M. F. Hasler, Feb 10 2023
|
|
REFERENCES
|
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.
|
|
LINKS
|
Tanya Khovanova, 86 Conjecture, T. K.'s Math Blog, Feb. 15, 2011.
Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
|
|
EXAMPLE
|
a(0) = 86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0.
|
|
MATHEMATICA
|
f[n_] := Block[{a = {}, k = 1}, While[k < 10000, If[ Position[ Union[ IntegerDigits[ 2^k, 10]], n] == {}, AppendTo[a, k]]; k++ ]; a]; Table[ f[n][[ -1]], {n, 0, 9}] (* Robert G. Wilson v, Jun 12 2004 *)
|
|
PROG
|
(PARI) A094776(n, L=10*20^#Str(n))={forstep(k=L, 0, -1, foreach(digits(1<<k), d, d==n&&next(2)); return(k))} \\ M. F. Hasler, Feb 13 2023
(Python)
n = str(n)
for k in range(L if L else 10*20**len(n), 0, -1):
|
|
CROSSREFS
|
Cf. A034293 (numbers k such that 2^k has no '2').
|
|
KEYWORD
|
nonn,fini,full,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|