OFFSET
0,4
COMMENTS
REFERENCES
C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 233.
LINKS
Karl V. Boddy, Table of n, a(n) for n = 0..10000
Vikram Prasad and M. A. Prasad, Estimates of the maximum excursion constant and stopping constant of juggler-like sequences, ResearchGate, 2025.
Harry J. Smith, Juggler Sequence
Eric Weisstein's World of Mathematics, Juggler Sequence
Wikipedia, Juggler sequence
MAPLE
A094683 :=proc(n) if n mod 2 = 0 then RETURN(floor(sqrt(n))) else RETURN(floor(n^(3/2))); end if; end proc;
MATHEMATICA
Table[If[EvenQ[n], Floor[Sqrt[n]], Floor[n^(3/2)]], {n, 0, 100}] (* Indranil Ghosh, Apr 07 2017 *)
PROG
(PARI) for(n=0, 100, print1(if(n%2, sqrtint(n^3), sqrtint(n)), ", ")) \\ Indranil Ghosh, Apr 08 2017
(Python)
import math
from sympy import sqrt
def a(n): return int(math.floor(sqrt(n))) if n%2 == 0 else int(math.floor(n**(3/2)))
print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 08 2017
(Python)
from math import isqrt
def A094683(n): return isqrt(n**3 if n % 2 else n) # Chai Wah Wu, Feb 18 2022
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Jun 09 2004
STATUS
approved