|
|
A093928
|
|
a(n) = sum( A073698(k), k=1...n )^(1/n).
|
|
2
|
|
|
2, 3, 8, 5, 6, 7, 6, 35, 104, 71, 72, 221, 228, 185, 212, 193, 234, 329, 278, 295, 278, 221, 288, 3619, 2792, 2457, 1870, 3633, 3002, 2583, 2182, 2097, 1808, 1473, 1540, 51699, 39382, 30063, 23206, 27885, 21928, 17511, 14150, 11459, 9818, 8183, 6812, 7665
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n }}. - M. F. Hasler, Apr 07 2009
a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n } }. - M. F. Hasler, Apr 07 2009
|
|
MATHEMATICA
|
(* After computing a[]=A073698 using the code given there *) s = 0; For[n = 1, n <= 50, n++, s += a[n]; Print[s^(1/n)]] (* Ryan Propper, Jul 21 2006 *)
|
|
PROG
|
(PARI) P=[]; s=0; for(n=1, 999, t=floor(sqrtn(s, n)); until( isprime(t++^n-s) & n==#P=setunion(P, Set(t^n-s)), ); print1(t, ", "); s=t^n) \\ M. F. Hasler, Apr 07 2009
(PARI) P=[]; s=0; for(n=1, 999, t=floor(sqrtn(s, n)); until( isprime(t++^n-s) & n==#P=setunion(P, Set(t^n-s)), ); print1(t, ", "); s=t^n) \\ M. F. Hasler, Apr 07 2009
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|