login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093928 a(n) = sum( A073698(k), k=1...n )^(1/n). 2
2, 3, 8, 5, 6, 7, 6, 35, 104, 71, 72, 221, 228, 185, 212, 193, 234, 329, 278, 295, 278, 221, 288, 3619, 2792, 2457, 1870, 3633, 3002, 2583, 2182, 2097, 1808, 1473, 1540, 51699, 39382, 30063, 23206, 27885, 21928, 17511, 14150, 11459, 9818, 8183, 6812, 7665 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n }}. - M. F. Hasler, Apr 07 2009
a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n } }. - M. F. Hasler, Apr 07 2009
MATHEMATICA
(* After computing a[]=A073698 using the code given there *) s = 0; For[n = 1, n <= 50, n++, s += a[n]; Print[s^(1/n)]] (* Ryan Propper, Jul 21 2006 *)
PROG
(PARI) P=[]; s=0; for(n=1, 999, t=floor(sqrtn(s, n)); until( isprime(t++^n-s) & n==#P=setunion(P, Set(t^n-s)), ); print1(t, ", "); s=t^n) \\ M. F. Hasler, Apr 07 2009
(PARI) P=[]; s=0; for(n=1, 999, t=floor(sqrtn(s, n)); until( isprime(t++^n-s) & n==#P=setunion(P, Set(t^n-s)), ); print1(t, ", "); s=t^n) \\ M. F. Hasler, Apr 07 2009
CROSSREFS
Cf. A093927: analog for A093355, where repetitions are allowed. - M. F. Hasler, Apr 07 2009
Cf. A093927: analog for A093355, where repetitions are allowed. - M. F. Hasler, Apr 07 2009
Sequence in context: A264978 A268675 A268385 * A356191 A135874 A372329
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 25 2004
EXTENSIONS
More terms from Ryan Propper, Jul 21 2006
Edited by M. F. Hasler, Apr 07 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 07:24 EDT 2024. Contains 375762 sequences. (Running on oeis4.)