login
a(n) = sum( A073698(k), k=1...n )^(1/n).
2

%I #10 Jul 11 2015 00:58:50

%S 2,3,8,5,6,7,6,35,104,71,72,221,228,185,212,193,234,329,278,295,278,

%T 221,288,3619,2792,2457,1870,3633,3002,2583,2182,2097,1808,1473,1540,

%U 51699,39382,30063,23206,27885,21928,17511,14150,11459,9818,8183,6812,7665

%N a(n) = sum( A073698(k), k=1...n )^(1/n).

%F a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n }}. - M. F. Hasler, Apr 07 2009

%F a(n+1) = min { k in N | k^(n+1) - a(n)^n is a prime not in { a(k+1)^(k+1)-a(k)^k; k<n } }. - _M. F. Hasler_, Apr 07 2009

%t (* After computing a[]=A073698 using the code given there *) s = 0; For[n = 1, n <= 50, n++, s += a[n]; Print[s^(1/n)]] (* _Ryan Propper_, Jul 21 2006 *)

%o (PARI) P=[]; s=0; for(n=1,999, t=floor(sqrtn(s,n)); until( isprime(t++^n-s) & n==#P=setunion(P,Set(t^n-s)),); print1(t,","); s=t^n) \\ _M. F. Hasler_, Apr 07 2009

%o (PARI) P=[]; s=0; for(n=1,999, t=floor(sqrtn(s,n)); until( isprime(t++^n-s) & n==#P=setunion(P,Set(t^n-s)),); print1(t,","); s=t^n) \\ _M. F. Hasler_, Apr 07 2009

%Y Cf. A073698, A073860.

%Y Cf. A093927: analog for A093355, where repetitions are allowed. - _M. F. Hasler_, Apr 07 2009

%Y Cf. A093927: analog for A093355, where repetitions are allowed. - _M. F. Hasler_, Apr 07 2009

%K nonn

%O 1,1

%A _Amarnath Murthy_, Apr 25 2004

%E More terms from _Ryan Propper_, Jul 21 2006

%E Edited by _M. F. Hasler_, Apr 07 2009